Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38612760

IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.


Lung Neoplasms , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment , Lung Neoplasms/genetics , Interleukin-1alpha/genetics
2.
Mol Cancer ; 23(1): 54, 2024 03 14.
Article En | MEDLINE | ID: mdl-38486218

BACKGROUND: Phosphoinositide 3-kinases (PI3Ks) are critical regulators of diverse cellular functions and have emerged as promising targets in cancer therapy. Despite significant progress, existing PI3K inhibitors encounter various challenges such as suboptimal bioavailability, potential off-target effects, restricted therapeutic indices, and cancer-acquired resistance. Hence, novel inhibitors that overcome some of these challenges are needed. Here, we describe the characterization of KTC1101, a novel pan-PI3K inhibitor that simultaneously targets tumor cell proliferation and the tumor microenvironment. Our studies demonstrate that KTC1101 significantly increases the anti-PD-1 efficacy in multiple pre-clinical mouse models. METHODS: KTC1101 was synthesized and characterized employing chemical synthesis, molecular modeling, Nuclear Magnetic Resonance (NMR), and mass spectrometry. Its target specificity was confirmed through the kinase assay, JFCR39 COMPARE analysis, and RNA-Seq analysis. Metabolic stability was verified via liver microsome and plasma assays, pharmacokinetics determined by LC-MS/MS, and safety profile established through acute toxicity assays to determine the LD50. The antiproliferative effects of KTC1101 were evaluated in a panel of cancer cell lines and further validated in diverse BALB/c nude mouse xenograft, NSG mouse xenograft and syngeneic mouse models. The KTC1101 treatment effect on the immune response was assessed through comprehensive RNA-Seq, flow cytometry, and immunohistochemistry, with molecular pathways investigated via Western blot, ELISA, and qRT-PCR. RESULTS: KTC1101 demonstrated strong inhibition of cancer cell growth in vitro and significantly impeded tumor progression in vivo. It effectively modulated the Tumor Microenvironment (TME), characterized by increased infiltration of CD8+ T cells and innate immune cells. An intermittent dosing regimen of KTC1101 enhanced these effects. Notably, KTC1101 synergized with anti-PD-1 therapy, significantly boosting antitumor immunity and extending survival in preclinical models. CONCLUSION: KTC1101's dual mechanism of action-directly inhibiting tumor cell growth and dynamically enhancing the immune response- represents a significant advancement in cancer treatment strategies. These findings support incorporating KTC1101 into future oncologic regimens to improve the efficacy of immunotherapy combinations.


CD8-Positive T-Lymphocytes , Phosphatidylinositol 3-Kinases , Humans , Animals , Mice , Chromatography, Liquid , Tandem Mass Spectrometry , Immunotherapy
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38339058

Given the role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in modulating cellular processes such as proliferation, survival, and migration, we hypothesized its potential as a novel therapeutic agent for wound closure enhancement. In this study, PIP3 was examined in its free form or as a complex with cationic starch (Q-starch) as a carrier. The intracellular bioactivity and localization of free PIP3 and the Q-starch/PIP3 complexes were examined. Our results present the capability of Q-starch to form complexes with PIP3, facilitate its cellular membrane internalization, and activate intracellular paths leading to enhanced wound healing. Both free PIP3 and Q-starch/PIP3 complexes enhanced monolayer gap closure in scratch assays and induced amplified collagen production within HaCAT and BJ fibroblast cells. Western blot presented enhanced AKT activation by free or complexed PIP3 in BJ fibroblasts in which endogenous PIP3 production was pharmacologically inhibited. Furthermore, both free PIP3 and Q-starch/PIP3 complexes expedited wound closure in mice, after single or daily dermal injections into the wound margins. Free PIP3 and the Q-starch/PIP3 complexes inherently activated the AKT signaling pathway, which is responsible for crucial wound healing processes such as migration; this was also observed in wound assays in mice. PIP3 was identified as a promising molecule for enhancing wound healing, and its ability to circumvent PI3K inhibition suggests possible implications for chronic wound healing.


Proto-Oncogene Proteins c-akt , Wound Healing , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Wound Healing/physiology , Signal Transduction/physiology , Fibroblasts/metabolism , Starch/metabolism , Cell Proliferation/physiology
4.
Oral Oncol ; 149: 106688, 2024 Feb.
Article En | MEDLINE | ID: mdl-38219706

Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent malignancy worldwide, with a significant proportion of patients developing recurrent and/or metastatic (R/M) disease. Despite recent advances in therapy, the prognosis for patients with advanced HNSCC remains poor. Here, we present the case of a patient with recurrent metastatic HNSCC harboring an HRAS G12S mutation who achieved a durable response to treatment with tipifarnib, a selective inhibitor of farnesyltransferase. The patient was a 48-year-old woman who had previously received multiple lines of therapy with no significant clinical response. However, treatment with tipifarnib resulted in a durable partial response that lasted 8 months. Serial genomic and transcriptomic analyses demonstrated upregulation of YAP1 and AXL in metastatic lesions compared with the primary tumor, the evolution of the tumor microenvironment from an immune-enriched to a fibrotic subtype with increased angiogenesis, and activation of the PI3K/AKT/mTOR pathway in tipifarnib treatment. Lastly, in HRAS-mutated PDXs and in the syngeneic HRAS model, we demonstrated that tipifarnib efficacy is limited by activation of the AKT pathway, and dual treatment with tipifarnib and the PI3K inhibitor, BYL719, resulted in enhanced anti-tumor efficacy. Our case study highlights the potential of targeting HRAS mutations with tipifarnib in R/M HNSCC and identifies potential mechanisms of acquired resistance to tipifarnib, along with immuno-, chemo-, and radiation therapy. Preclinical results provide a firm foundation for further investigation of drug combinations of HRAS-and PI3K -targeting therapeutics in R/M HRAS-driven HNSCC.


Head and Neck Neoplasms , Proto-Oncogene Proteins c-akt , Quinolones , Female , Humans , Middle Aged , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Neoplasm Recurrence, Local/drug therapy , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment , Proto-Oncogene Proteins p21(ras)/genetics
5.
Mol Oncol ; 17(11): 2337-2355, 2023 Nov.
Article En | MEDLINE | ID: mdl-37609678

Targeted therapies for prostate, breast, and ovarian cancers are based on their activity against primary tumors rather than their anti-metastatic activity. Consequently, there is an urgent need for new agents targeting the metastatic process. Emerging evidence correlates in vitro and in vivo cancer invasion and metastasis with increased activity of the proteases mesotrypsin (prostate and breast cancer) and kallikrein 6 (KLK6; ovarian cancer). Thus, mesotrypsin and KLK6 are attractive putative targets for therapeutic intervention. As potential therapeutics for advanced metastatic prostate, breast, and ovarian cancers, we report novel mesotrypsin- and KLK6-based therapies, based on our previously developed mutants of the human amyloid ß-protein precursor Kunitz protease inhibitor domain (APPI). These mutants, designated APPI-3M (prostate and breast cancer) and APPI-4M (ovarian cancer), demonstrated significant accumulation in tumors and therapeutic efficacy in orthotopic preclinical models, with the advantages of long retention times in vivo, high affinity and favorable pharmacokinetic properties. The applicability of the APPIs, as a novel therapy and for imaging purposes, is supported by their good safety profile and their controlled and scalable manufacturability in bioreactors.


Breast Neoplasms , Ovarian Neoplasms , Male , Humans , Female , Serine Proteinase Inhibitors/therapeutic use , Amyloid beta-Peptides/therapeutic use , Prostate/pathology , Amyloid beta-Protein Precursor/pharmacology , Amyloid beta-Protein Precursor/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Kallikreins/genetics
6.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188963, 2023 11.
Article En | MEDLINE | ID: mdl-37619805

RAS genes are known to be dysregulated in cancer for several decades, and substantial effort has been dedicated to develop agents that reduce RAS expression or block RAS activation. The recent introduction of RAS inhibitors for cancer patients highlights the importance of comprehending RAS alterations in head and neck cancer (HNC). In this regard, we examine the published findings on RAS alterations and pathway activations in HNC, and summarize their role in HNC initiation, progression, and metastasis. Specifically, we focus on the intrinsic role of mutated-RAS on tumor cell signaling and its extrinsic role in determining tumor-microenvironment (TME) heterogeneity, including promoting angiogenesis and enhancing immune escape. Lastly, we summarize the intrinsic and extrinsic role of RAS alterations on therapy resistance to outline the potential of targeting RAS using a single agent or in combination with other therapeutic agents for HNC patients with RAS-activated tumors.


Antineoplastic Agents , Head and Neck Neoplasms , Humans , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Signal Transduction , Genes, ras , Tumor Microenvironment
7.
Commun Biol ; 6(1): 811, 2023 08 03.
Article En | MEDLINE | ID: mdl-37537232

Cells sense, manipulate and respond to their mechanical microenvironment in a plethora of physiological processes, yet the understanding of how cells transmit, receive and interpret environmental cues to communicate with distant cells is severely limited due to lack of tools to quantitatively infer the complex tangle of dynamic cell-cell interactions in complicated environments. We present a computational method to systematically infer and quantify long-range cell-cell force transmission through the extracellular matrix (cell-ECM-cell communication) by correlating ECM remodeling fluctuations in between communicating cells and demonstrating that these fluctuations contain sufficient information to define unique signatures that robustly distinguish between different pairs of communicating cells. We demonstrate our method with finite element simulations and live 3D imaging of fibroblasts and cancer cells embedded in fibrin gels. While previous studies relied on the formation of a visible fibrous 'band' extending between cells to inform on mechanical communication, our method detected mechanical propagation even in cases where visible bands never formed. We revealed that while contractility is required, band formation is not necessary, for cell-ECM-cell communication, and that mechanical signals propagate from one cell to another even upon massive reduction in their contractility. Our method sets the stage to measure the fundamental aspects of intercellular long-range mechanical communication in physiological contexts and may provide a new functional readout for high content 3D image-based screening. The ability to infer cell-ECM-cell communication using standard confocal microscopy holds the promise for wide use and democratizing the method.


Extracellular Matrix , Mechanical Phenomena , Extracellular Matrix/physiology , Fibroblasts
8.
Biology (Basel) ; 12(7)2023 Jul 11.
Article En | MEDLINE | ID: mdl-37508418

Mitochondria-critical metabolic hubs in eukaryotic cells-are involved in a wide range of cellular functions, including differentiation, proliferation, and death. Mitochondria import most of their proteins from the cytosol in a linear form, after which they are folded by mitochondrial chaperones. However, despite extensive research, the extent to which the function of particular chaperones is essential for maintaining specific mitochondrial and cellular functions remains unknown. In particular, it is not known whether mitochondrial chaperones influence the sensitivity to drugs used in the treatment of cancers. By mining gene expression and drug sensitivity data for cancer cell lines from publicly available databases, we identified mitochondrial chaperones whose expression is associated with sensitivity to oncology drugs targeting particular cellular pathways in a cancer-type-dependent manner. Importantly, we found the expression of TRAP1 and HSPD1 to be associated with sensitivity to inhibitors of DNA replication and mitosis. We confirmed experimentally that the expression of HSPD1 is associated with an increased sensitivity of ovarian cancer cells to drugs targeting mitosis and a reduced sensitivity to drugs promoting apoptosis. Taken together, our results support a model in which particular mitochondrial pathways hinge upon specific mitochondrial chaperones and provide the basis for understanding selectivity in mitochondrial chaperone-substrate specificity.

9.
Mol Oncol ; 17(12): 2618-2636, 2023 Dec.
Article En | MEDLINE | ID: mdl-37501404

Blocking the mitogen-activated protein kinase (MAPK) pathway with the MEK1/2 inhibitor trametinib has produced promising results in patients with head and neck squamous cell carcinoma (HNSCC). In the current study, we showed that trametinib treatment leads to overexpression and activation of the epidermal growth factor receptor (EGFR) in HNSCC cell lines and patient-derived xenografts. Knockdown of EGFR improved trametinib treatment efficacy both in vitro and in vivo. Mechanistically, we demonstrated that trametinib-induced EGFR overexpression hyperactivates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. In vitro, blocking the PI3K pathway with GDC-0941 (pictilisib), or BYL719 (alpelisib), prevented AKT pathway hyperactivation and enhanced the efficacy of trametinib in a synergistic manner. In vivo, a combination of trametinib and BYL719 showed superior antitumor efficacy vs. the single agents, leading to tumor growth arrest. We confirmed our findings in a syngeneic murine head and neck cancer cell line in vitro and in vivo. Taken together, our findings show that trametinib treatment induces hyperactivation of EGFR/PI3K/AKT; thus, blocking of the EGFR/PI3K pathway is required to improve trametinib efficacy in HNSCC.


Head and Neck Neoplasms , Phosphatidylinositol 3-Kinase , Humans , Animals , Mice , Squamous Cell Carcinoma of Head and Neck/drug therapy , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Head and Neck Neoplasms/drug therapy , ErbB Receptors/metabolism , Cell Line, Tumor
10.
Sci Rep ; 13(1): 11923, 2023 07 24.
Article En | MEDLINE | ID: mdl-37488176

Cancer progression is enhanced by the interaction of programmed death-ligand 1 (PDL1), which is associated with inhibition of the immune response against tumors, and vascular endothelial growth factor (VEGF), which inhibits immune cell activity while inducing angiogenesis and proliferation of cancer cells. Dual inhibition of PDL1 and VEGF may therefore confer a synergistic anti-cancer therapeutic effect. We present a novel strategy for developing a therapeutic that simultaneously binds and inhibits both PDL1 and VEGF. We generated a bi-specific protein, designated DuRan-Bis, comprising a single chain variable fragment (scFv)-based inhibitor of PDL1 fused to an scFv-based inhibitor of VEGF, with the latter being attached to an Fc fragment. We found that DuRan-Bis binds to both PDL1 and VEGF with high affinity. Compared to treatments with mono-specific proteins, alone or in combination, the DuRan-Bis chimera showed superior inhibition of the proliferation of glioblastoma cells. In comparison to treatment with immune cells alone, a combination of immune cells with DuRan-Bis decreased the viability of head and neck cancer cells. To the best of our knowledge, this study is the first to use a single polypeptide chain scFv-scFv-Fc scaffold for engineering a high-affinity bi-specific inhibitor of PDL1 and VEGF.


Glioblastoma , Single-Chain Antibodies , Humans , Vascular Endothelial Growth Factor A , B7-H1 Antigen , Angiogenesis Inhibitors
11.
Nanomaterials (Basel) ; 13(13)2023 Jun 30.
Article En | MEDLINE | ID: mdl-37446506

The tailored design of drug delivery systems for specific therapeutic agents is a prevailing approach in the field. In this paper, we present a study that highlights the potential of our modified starch, Q-starch, as a universal and adaptable drug delivery carrier for diverse therapeutic agents. We investigate the ability of Q-starch/cargo complexes to target different organelles within the cellular landscape, based on the specific activation sites of therapeutic agents. Plasmid DNA (pDNA), small interfering RNA (siRNA), and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) were chosen as representative therapeutic molecules, acting in the nucleus, cytoplasm, and membrane, respectively. By carrying out comprehensive characterizations, employing dynamic light scattering (DLS), determining the zeta potential, and using cryo-transmitting electron microscopy (cryo-TEM), we reveal the formation of nano-sized, positively charged, and spherical Q-starch complexes. Our results demonstrate that these complexes exhibit efficient cellular uptake, targeting their intended organelles while preserving their physical integrity and functionality. Notably, the intracellular path of the Q-starch/cargo complex is guided by the cargo itself, aligning with its unique biological activity site. This study elucidates the versatility and potency of Q-starch as a versatile drug delivery carrier, paving the way for novel applications offering targeted delivery strategies for potential therapeutic molecules.

12.
Sci Adv ; 9(21): eadg2809, 2023 05 26.
Article En | MEDLINE | ID: mdl-37235664

Accurate predictive biomarkers of response to immune checkpoint inhibitors (ICIs) are required for better stratifying patients with cancer to ICI treatments. Here, we present a new concept for a bioassay to predict the response to anti-PD1 therapies, which is based on measuring the binding functionality of PDL1 and PDL2 to their receptor, PD1. In detail, we developed a cell-based reporting system, called the immuno-checkpoint artificial reporter with overexpression of PD1 (IcAR-PD1) and evaluated the functionality of PDL1 and PDL2 binding in tumor cell lines, patient-derived xenografts, and fixed-tissue tumor samples obtained from patients with cancer. In a retrospective clinical study, we found that the functionality of PDL1 and PDL2 predicts response to anti-PD1 and that the functionality of PDL1 binding is a more effective predictor than PDL1 protein expression alone. Our findings suggest that assessing the functionality of ligand binding is superior to staining of protein expression for predicting response to ICIs.


Neoplasms , Humans , Retrospective Studies , Ligands , Neoplasms/drug therapy
13.
J Exp Clin Cancer Res ; 42(1): 107, 2023 May 01.
Article En | MEDLINE | ID: mdl-37121997

BACKGROUND: Ovarian cancer (OC) is known for exhibiting low response rates to immune checkpoint inhibitors that activate T cells. However, immunotherapies that activate B cells have not yet been extensively explored and may be a potential target, as B cells that secrete immunoglobulins have been associated with better outcomes in OC. Although the secretion of immunoglobulins is often mediated by the microbiome, it is still unclear what role they play in limiting the progression of OC. METHODS: We conducted an in-vivo CRISPR screen of immunodeficient (NSG) and immune-intact wild type (WT) C57/BL6 mice to identify tumor-derived immune-escape mechanisms in a BRAC1- and TP53-deficient murine ID8 OC cell line (designated ITB1). To confirm gene expression and signaling pathway activation in ITB1 cells, we employed western blot, qPCR, immunofluorescent staining, and flow cytometry. Flow cytometry was also used to identify immune cell populations in the peritoneum of ITB1-bearing mice. To determine the presence of IgA-coated bacteria in the peritoneum of ITB1-bearing mice and the ascites of OC patients, we employed 16S sequencing. Testing for differences was done by using Deseq2 test and two-way ANOVA test. Sequence variants (ASVs) were produced in Qiime2 and analyzed by microeco and phyloseq R packages. RESULTS: We identified tumor necrosis factor receptor-associated factor 3 (TRAF3) as a tumor-derived immune suppressive mediator in ITB1 cells. Knockout of TRAF3 (TRAF3KO) activated the type-I interferon pathway and increased MHC-I expression. TRAF3KO tumors exhibited a growth delay in WT mice vs. NSG mice, which was correlated with increased B cell infiltration and activation compared to ITB1 tumors. B cells were found to be involved in the progression of TRAF3KO tumors, and B-cell surface-bound and secreted IgA levels were significantly higher in the ascites of TRAF3KO tumors compared to ITB1. The presence of commensal microbiota was necessary for B-cell activation and for delaying the progression of TRAF3KO tumors in WT mice. Lastly, we observed unique profiles of IgA-coated bacteria in the ascites of OC-bearing mice or the ascites of OC patients. CONCLUSIONS: TRAF3 is a tumor-derived immune-suppressive modulator that influences B-cell infiltration and activation, making it a potential target for enhancing anti-tumor B-cell responses in OC.


Ovarian Neoplasms , TNF Receptor-Associated Factor 3 , Humans , Female , Mice , Animals , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Ascites , Mice, Knockout , Ovarian Neoplasms/pathology , Immunoglobulin A/metabolism , Cell Line, Tumor
15.
Cancer Res ; 83(7): 1031-1047, 2023 04 04.
Article En | MEDLINE | ID: mdl-36753744

The survival rate for patients with head and neck cancer (HNC) diagnosed with cervical lymph node (cLN) or distant metastasis is low. Genomic alterations in the HRAS oncogene are associated with advanced tumor stage and metastasis in HNC. Elucidation of the molecular mechanisms by which mutated HRAS (HRASmut) facilitates HNC metastasis could lead to improved treatment options for patients. Here, we examined metastasis driven by mutant HRAS in vitro and in vivo using HRASmut human HNC cell lines, patient-derived xenografts, and a novel HRASmut syngeneic model. Genetic and pharmacological manipulations indicated that HRASmut was sufficient to drive invasion in vitro and metastasis in vivo. Targeted proteomic analysis showed that HRASmut promoted AXL expression via suppressing the Hippo pathway and stabilizing YAP1 activity. Pharmacological blockade of HRAS signaling with the farnesyltransferase inhibitor tipifarnib activated the Hippo pathway and reduced the nuclear export of YAP1, thus suppressing YAP1-mediated AXL expression and metastasis. AXL was required for HRASmut cells to migrate and invade in vitro and to form regional cLN and lung metastases in vivo. In addition, AXL-depleted HRASmut tumors displayed reduced lymphatic and vascular angiogenesis in the primary tumor. Tipifarnib treatment also regulated AXL expression and attenuated VEGFA and VEGFC expression, thus regulating tumor-induced vascular formation and metastasis. Our results indicate that YAP1 and AXL are crucial factors for HRASmut-induced metastasis and that tipifarnib treatment can limit the metastasis of HNC tumors with HRAS mutations by enhancing YAP1 cytoplasmic sequestration and downregulating AXL expression. SIGNIFICANCE: Mutant HRAS drives metastasis of head and neck cancer by switching off the Hippo pathway to activate the YAP1-AXL axis and to stimulate lymphovascular angiogenesis.


Head and Neck Neoplasms , Proteomics , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Line, Tumor , Signal Transduction , Head and Neck Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
16.
Adv Sci (Weinh) ; 10(3): e2205529, 2023 01.
Article En | MEDLINE | ID: mdl-36453577

Glioblastoma (GBM) is the most aggressive type of cancer. Its current first-line postsurgery regimens are radiotherapy and temozolomide (TMZ) chemotherapy, both of which are DNA damage-inducing therapies but show very limited efficacy and a high risk of resistance. There is an urgent need to develop novel agents to sensitize GBM to DNA-damaging treatments. Here it is found that the triterpene compound stellettin B (STELB) greatly enhances the sensitivity of GBM to ionizing radiation and TMZ in vitro and in vivo. Mechanistically, STELB inhibits the expression of homologous recombination repair (HR) factors BRCA1/2 and RAD51 by promoting the degradation of PI3Kα through the ubiquitin-proteasome pathway; and the induced HR deficiency then leads to augmented DNA damage and cell death. It is further demonstrated that STELB has the potential to rapidly penetrate the blood-brain barrier to exert anti-GBM effects in the brain, based on zebrafish and nude mouse orthotopic xenograft tumor models. The study provides strong evidence that STELB represents a promising drug candidate to improve GBM therapy in combination with DNA-damaging treatments.


Brain Neoplasms , Glioblastoma , Triterpenes , Animals , Mice , Humans , Glioblastoma/metabolism , Recombinational DNA Repair , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Phosphatidylinositol 3-Kinases/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Zebrafish/metabolism , Drug Resistance, Neoplasm , Brain Neoplasms/genetics , Temozolomide/pharmacology , Temozolomide/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , DNA Damage
17.
Int J Mol Sci ; 23(22)2022 Nov 14.
Article En | MEDLINE | ID: mdl-36430528

Lung cancer cells in the tumor microenvironment facilitate immune evasion that leads to failure of conventional chemotherapies, despite provisionally decided on the genetic diagnosis of patients in a clinical setup. The current study follows three lung cancer patients who underwent "personalized" chemotherapeutic intervention. Patient-derived xenografts (PDXs) were subjected to tumor microarray and treatment screening with chemotherapies, either individually or in combination with the peptide R11-NLS-pep8; this peptide targets both membrane-associated and nuclear PCNA. Ex vivo, employing PDX-derived explants, it was found that combination with R11-NLS-pep8 stimulated antineoplastic effect of chemotherapies that were, although predicted based on the patient's genetic mutation, inactive on their own. Furthermore, treatment in vivo of PDX-bearing mice showed an exactly similar trend in the result, corroborating the finding to be translated into clinical setup.


Antineoplastic Agents , Lung Neoplasms , Humans , Mice , Animals , Drug Delivery Systems , Peptides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Lung Neoplasms/drug therapy , Tumor Microenvironment , Disease Models, Animal
18.
Int J Mol Sci ; 23(13)2022 Jul 04.
Article En | MEDLINE | ID: mdl-35806439

Harnessing immune effector cells to benefit cancer patients is becoming more and more prevalent in recent years. However, the increasing number of different therapeutic approaches, such as chimeric antigen receptors and armored chimeric antigen receptors, requires constant adjustments of the transgene expression levels. We have previously demonstrated it is possible to achieve spatial and temporal control of transgene expression as well as tailoring the inducing agents using the Chimeric Antigen Receptor Tumor Induced Vector (CARTIV) platform. Here we describe the next level of customization in our promoter platform. We have tested the functionality of three different minimal promoters, representing three different promoters' strengths, leading to varying levels of CAR expression and primary T cell function. This strategy shows yet another level of CARTIV gene regulation that can be easily integrated into existing CAR T systems.


Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , Neoplasms/metabolism , Promoter Regions, Genetic , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes , Tumor Microenvironment/genetics
19.
Front Oncol ; 12: 838911, 2022.
Article En | MEDLINE | ID: mdl-35600380

In light of the development of RAS inhibitors, a reliable assessment of the prevalence of RAS mutations and their correlation with the clinical features of patients with HNC is crucially needed. This meta-analysis compiles the findings of 149 studies with over 8500 HNC patients and assesses the global prevalence of mutations in the HRAS, KRAS and NRAS genes. The available data were stratified according to geographical region, clinical features, and tumor characteristics, including human papillomavirus (HPV) infection status and tumor stage. In addition, the distribution of codon substitutions in each RAS gene was assessed. The estimated mutation rate is highest for HRAS (7%), followed by KRAS (2.89%) and NRAS (2.20%). HRAS prevalence in South Asia (15.28%) is twice as high as the global estimate. HRAS mutations are more prevalent in oral cavity and salivary gland tumors. In contrast, KRAS mutations are found more frequently in sinonasal tumors, and NRAS mutations are found chiefly in tumors of the nasopharynx. OR analyses show a significant association between HRAS mutations and a high tumor stage (OR=3.63). In addition, there is a significant association between HPV-positive status and KRAS mutations (OR=2.09). This study highlights RAS as a potential therapeutic target in certain subsets of HNC patients.

20.
Cancers (Basel) ; 14(7)2022 Apr 02.
Article En | MEDLINE | ID: mdl-35406587

Oral potentially malignant disorders (OPMD) may precede oral squamous cell carcinoma (OSCC). Reported rates of malignant transformation of OPMD range from 3 to 50%. While some clinical, histological, and molecular factors have been associated with a high-risk OPMD, they are, to date, insufficiently accurate for treatment decision-making. Moreover, this range highlights differences in the clinical definition of OPMD, variation in follow-up periods, and molecular and biological heterogeneity of OPMD. Finally, while treatment of OPMD may improve outcome, standard therapy has been shown to be ineffective to prevent OSCC development in patients with OPMD. In this perspective paper, several experts discuss the main challenges in oral cancer prevention, in particular the need to (i) to define an OPMD classification system by integrating new pathological and molecular characteristics, aiming (ii) to better identify OPMD at high risk of malignant transformation, and (iii) to develop treatment strategies to eradicate OPMD or prevent malignant transformation.

...